
Detecting Arbitrary Intermediate Keypoints for Human Pose Estimation with
Vision Transformers

Katja Ludwig Philipp Harzig Rainer Lienhart
Machine Learning and Computer Vision Lab, University of Augsburg

{katja.ludwig, philipp.harzig, rainer.lienhart}@uni-a.de

Abstract

Most human pose estimation datasets have a fixed set
of keypoints. Hence, trained models are only capable of
detecting these defined points. Adding new points to the
dataset requires a full retraining of the model. We present
a model based on the Vision Transformer architecture that
can detect these fixed points and arbitrary intermediate
points without any computational overhead during infer­
ence time. Furthermore, independently detected interme­
diate keypoints can improve analyses derived from the key-
points such as the calculation of body angles. Our approach
is based on TokenPose [9] and replaces the fixed keypoint
tokens with an embedding of human readable key point vec­
tors to keypoint tokens. For ski jumpers, who benefit from
intermediate detections especially of their skis, this model
achieves the same performance as TokenPose on the fixed
keypoints and can detect any intermediate keypoint directly.

1. Introduction

In many sports disciplines, video analysis is a popular
technique to evaluate and improve the performance of the
athletes. This video analysis is often based on the loca­
tion of certain keypoints of interest in the video frames.
Ski jumpers, for example, use the keypoint locations to cal­
culate body angles in order to evaluate their body posture
during the flight and achieve long jumping distances. 2D
human pose estimation techniques can automate the detec­
tion of the keypoint locations, which makes the video anal­
ysis less time consuming and available to more athletes.
Ski jumpers are mainly interested in angles between body
parts or skis, hence intermediate keypoints can help to get a
more robust estimation of the angles. With more keypoints,
a body part or ski angle is not solely based on the detection
of the two end keypoints, but can be calculated as a mean of
angles between arbitrary keypoints on the body part or ski.
Other analyses that are based on intermediate keypoints or

Figure 1. Intermediate keypoint detection. The white cross on the
silhouette in the lower image shows the selection of the keypoint.
In the upper video frame, the corresponding detected keypoint is
displayed with a red circle. The user can move the white cross in
the silhouette to change the definition of the keypoint.

parameters derived from the keypoints can also be improved
as the detections of intermediate keypoints can be used in
conjunction with the interpolations based on the standard
keypoints.

In general, 2D human pose estimation is a task of high
interest in computer vision research. Most common are
architectures that use deep convolutional neural networks
because of their high performance in visual tasks. Typi­
cally, these models are trained on a dataset with a fixed
keypoint definition and the goal is to achieve a localiza­
tion of these defined keypoints as precisely as possible. The
convolutional neural networks learn low and high level fea­
tures in their backbones combined with a head network that
learns to extract detection heatmaps for each defined key­
point based on the backbone features. These head networks
are fixed to the defined keypoints. Adding new keypoints
requires a full new training of the network head. Recently,
Transformer [14] networks have emerged from natural lan­
guage processing tasks to vision tasks. In language appli­
cations, all words are at first embedded to vectors of fixed
dimensions. Transformers can handle input sequences of
various length, which is useful for sentences. Vision Trans­
former [4] architectures split images in patches and embed
these image patches to vectors like the words. In order to

detect keypoints, TokenPose [9] appends additional learn­
able vectors to that sequence of embedded image patches.
Each of these tokens corresponds to a defined keypoint in
the dataset. Our method leverages the variable sequence
length as it provides the possibility to append and remove
tokens as needed. This is not possible in the TokenPose
model because the network relies on the intermediate rep­
resentations of all tokens to generate suitable predictions.
Furthermore, we extend the TokenPose architecture so that
we can train on arbitrary intermediate points. We learn
a linear transformation of vectors representing the desired
keypoints to the embedding space instead of tokens repre­
senting the fixed keypoints. Therefore, we can design the
keypoint vector during inference time according to the key­
points that we like to detect. Figure 1 shows such an inter­
mediate keypoint detection. [9]

The contributions of this work can be summarized as fol­
lows:

• Our proposed training method makes the TokenPose
predictions independent of the provided keypoint to­
kens. Trained with our method, it can detect a subset
of the known keypoints without the necessity of all to­
kens being present.

• We extend the TokenPose model to detect arbitrary in­
termediate points. The desired points are encoded in
human understandable keypoint vectors which are em­
bedded through a learned linear transformation in the
token space.

• Experiments show that our method can detect arbitrary
intermediate keypoints of ski jumpers while maintain­
ing the detection performance of the standard key­
points of ski jumpers. Furthermore, the method also
works on another sports dataset with triple and long
jump images and on the COCO [10] dataset.

2. Related Work
In many sports disciplines, computer vision is a benefi­

cial technique to analyze athletes. Kulkarni et al. [8] use
convolutional neural networks to estimate athletes’ poses
and classify table tennis stroke types. Woinoski et al. [18]
detect and track swimmers during races to analyze strokes
and detect breaths. Einfalt et al. [5] detect poses of swim­
mers and improve their estimated poses with using the
swimming style as an input to the neural network and a pose
refinement over time. Computer vision is also used in team
sports, e.g., Bridgeman et al. [2] track athletes in soccer
videos and create 3D poses of them and Wei et al.[17] es­
timate the location of the ball from monocular basketball
video footage based on the players’ trajectories. Further­
more, human pose and ski estimation is used for different
ski disciplines. Wang et al. [15] estimate the poses of

freestyle skiers and propose a pose correction and exemplar­
based visual suggestions to the athletes. Human and ski
pose estimation with robust estimation methods is also used
by Ludwig et al. [11] in order to calculate the flight angles
of ski jumpers during their flight phase.

In sports, 2D human pose estimation is very common
technique among computer vision analysis applications.
The approaches with the best scores on leaderboards of
common benchmarks like COCO [10] or MPII Human Pose
[1] are based on convolutional neural networks [7, 3]. A
common backbone for recent human pose estimation ap­
proaches which is also used in [7] is the High Resolution
Net (HRNet) [16]. It preserves a large resolution through­
out the whole network and uses connections between dif­
ferent resolutions instead of an encoder decoder architec­
ture like in [6, 12, 19]. Contrary to the fully convolutional
approaches which are most common, TokenPose [9] is a
Transformer [14] based approach for human pose estima­
tion. It is usable without any convolutions, but it achieves
the best and state-of-the-art results with a part of an HRNet
as a feature extractor. The basic Transformer [14] architec­
ture takes sequences of ID tokens as an input. In order to
deal with 2D images or feature maps, Vision Transformer
[4] proposes to embed small image patches by a learned
linear projection to ID token vectors. This approach is used
by TokenPose. Additionally, learnable keypoint tokens are
appended to the image tokens and used as the Transformer
input. The output of these keypoint tokens is then trans­
formed through a MLP to heatmaps.

3. Method

Our model is based on TokenPose-Base [9], which is a
combined convolutional and Transformer architecture. Ba­
sically, the proposed method and architecture are also ap­
plicable to all other TokenPose variants.

3.1. Additional Tokens for Intermediate Keypoints

In the standard TokenPose architectures, a token is
learned for each defined keypoint. These tokens are ap­
pended to the image patches and fed jointly through the
Transformer network. In the end, the outputs of the Trans­
former network that correspond to these tokens are con­
verted to heatmaps with a MLP with shared weights across
the keypoints. Hence, the naive approach to add more key­
points is to create a token for each added keypoint and train
the network on the larger keypoint set. [9]

3.1.1 Learning Independent Keypoint Tokens

This method has a disadvantage. It always detects all in­
termediate keypoints at all times, even if only a subset of
intermediate points is desired. Removing the unnecessary

Keypoint Token | Additional Keyporrt Token

Figure 2. Scematic representation of keypoint sampling and per­
mutation. For each additional keypoint, a token is added to the
standard keypoint tokens. During training, a random subset of all
keypoint tokens is selected and randomly permuted. Only the se­
lected keypoints are appended to the visual tokens as an input to
the Transformer network.

tokens from the Transformer input sequence in order to re­
ceive only the necessary detections fails, as shown by evalu­
ations in Section 4. We suppose the reason is that the Trans­
former network correlates all embeddings of the input with
each other, visual tokens as well as keypoint tokens. There­
fore, the result for each keypoint is dependent on the inter­
mediate representations of the feature maps corresponding
to the keypoint tokens. If these tokens are not given in the
input sequence, the Transformer misses necessary informa­
tion to generate precise predictions. This dependence is a
desired effect in TokenPose, as the intermediate results of
neighboring keypoints help the model to detect occluded
keypoints. This effect is called contstraint cue in Token-
Pose. [9]

We can alter the model so that it can cope with our sce­
nario. In each training step, we randomly select a subset
of the keypoints, whereby the number of selected keypoints
is random as well, and permute them. As an input to the
Transformer model, we use only the tokens that correspond
to the selected subset of keypoints, the other tokens are not
present in the input sequence. Figure 2 visualizes this tech­
nique. Consequently, the loss is calculated based on the
sampled keypoints. Solely permuting the keypoint tokens
is not sufficient, as Transformer networks are independent
from the input sequence order to a certain extent Permu­
tation and random keypoint sampling is necessary that the
Transformer learns to be quite independent from the present
keypoint tokens, but evaluations show that there is still a
slight performance drop if less keypoint tokens are used (see
Section 4).

3.1.2 Analysis of Keypoint Tokens

Our goal is to detect arbitrary intermediate keypoints di­
rectly through the network. A transformation is necessary
to create the specific keypoint tokens in order to detect the
desired keypoints. A look at the inner product matrix of the
learned keypoint tokens, which shows the similarity of the

tokens, reveals a problem. In Figure 3, the inner product
matrix of left and right ski with nine equally spaced inter­
mediate keypoints is displayed. The matrix shows that the
similarity of neighboring keypoint tokens is mostly high,
but smaller than the similarity between the corresponding
left and right keypoint token. Hence, it is not possible to
design the tokens to detect arbitrary intermediate keypoints
as there is an interference between tokens corresponding to
left and right.

3.2. Intermediate Keypoints Encoded in Vectors

Therefore, we design another architecture, which is vi­
sualized in Figure 4. At first, features are extracted from
the images with a HRNet [16] backbone. The feature maps
are split into feature patches and embedded through a linear
projection like proposed by [4]. 2D sine positional encoding
is added to the resulting visual tokens. Instead of appending
learnable keypoint tokens to the sequence of visual tokens,
we use a method similar to the feature patch embedding. We
encode the keypoints in keypoint vectors (details follow in
Section 3.2.1) and use a linear projection to create embed­
dings of the keypoints. Hence, the model learns the trans­
formation from keypoint vectors to keypoint tokens. Before
appending the keypoint tokens to the input sequence, we
randomly sample and permute the tokens, like described in
Section 3.1.1. Between the Transformer layers, we always
add the positional encoding to the visual tokens, but not to
the keypoint tokens as we want them to be independent of

rsti
O.lO_rsti_rsta
0.20_rsti_rsta
0.30_rsti_rsta
0.40_rsti_rsta
0.50_rsti_rsta
0.60_rsti_rsta
0.70_rsti_rsta
0.80_rsti_rsta
0.90_rsti_rsta

rsta
Isti

O.lOjstiJsta
0.20_lstiJsta
0.30_lsti_lsta
0.40_lsti_lsta
O.SOJstiJsta
0.60_lsti_lsta
0.70_lsti_lsta
0.80_lsti_lsta
0.90_lsti_lsta

Ista

Figure 3. Inner product matrix for left and right ski with interme­
diate points, rsti/lsti stands for right/left ski tip, rsta/lsta stands for
right/left ski tail, p s t is ta means the keypoint is located on frac­
tion p of the line between sti and sta. With increasing similarity,
the color darkens, indicating a high similarity between correspond­
ing left and right keypoints, which can be seen by the dark colored
diagonal squares in the top right and bottom left part of the matrix.

□ Feature Patch

| Visual Token

□ Keypoint Vector

[] Keypoint Token

(5) Positional Encoding

Figure 4. Model architecture with keypoint vectors. Image features are extracted with a convolutional neural network, split into feature
patches and transformed to visual tokens using a learned linear projection. Keypoint vectors are treated similarly. They are transformed to
keypoint tokens through a learned Unear projection. Both Unear projections are independent from each other. Positional encoding is added
to the visual tokens, but not to the keypoint tokens. Keypoint tokens are randomly sampled and permuted before they are fed through the
Transformer network. A MLP is used to transform the resulting keypoint tokens to heatmaps. [9]

the order. Like in TokenPose [9], we keep the outputs of the
Transfomer corresponding to the keypoint tokens and use
a MLP with shared weights to generate heatmaps for the
desired keypoints.

3.2.1 Keypoint Vectors

The keypoint vectors are designed in a way that arbitrary
keypoints on lines between the standard keypoints are rep­
resentable. If a dataset has n annotated keypoints per per­
son, a keypoint vector v for this dataset has length n, hence
v & R". If we want to detect a keypoint of these annotated
kepoints, e.g., keypoint i, then

Vk - f l , k = i(0, k ^ i

Let the line between keypoints i , j be a body part for the
annotated keypoints in the dataset, e.g. forearm, upper arm,
thigh, lower leg, neck, etc. If a keypoint should be detected
that Ues on fraction p on the line between keypoints i and j ,
v is defined as

Vk =
1 - P ,
P,
0,

k = i
k = j k = 1, ...,n
k i / \ k j

If p = 1, the keypoint is located at the end on the line from i
to j , hence the desired keypoint equals keypoint j . If p = 0,
the keypoint definition is equal to keypoint i. For our train­
ing, we use all standard keypoints and randomly generate
other arbitrary keypoints, sampled from all bodyparts of the
dataset with p sampled uniformly from [0,1]. An example
for the ski jump dataset is visualized in Figure 5. With this
method, it is also possible to generate keypoints that are lo­
cated between intermediate keypoints. If we take the COCO
dataset, for example, and want to generate keypoints on the
spine, these keypoints are located on the line between key­
points i and j , whereby keypoint i is located in the middle of
the two shoulder keypoints s i , S2 and keypoint j in the mid­
dle of the left and right hip keypoint h i, hz. Hence, if we
want to detect a keypoint on fraction p of the line between
i and j , our keypoint vector v consists of zeros apart from
entries vS1 = vS2 = (1 — p) ■ 0.5 and = Vh2 = p - 0.5.
So, we can design arbitrary intermediate keypoints that fie
between annotated keypoints.

3.3. Exponential Moving Average

The validation score has a high fluctuation rate through­
out the training, even after convergence. In order to re­
duce fluctuation, we keep an exponential moving average
(EMA) of our model like it is used for mean teacher semi­
supervised learning in [13]. Let a be the EMA rate, then all

Figure 5. Keypoint vectors for the ski jump dataset. Keypoint vec­
tors are displayed vertically. The first eleven vectors correspond
to the standard keypoints. The last six keypoints are generated,
whereby the number of generated keypoints is chosen randomly.
The first generated keypoint lies on the upper arm, the second and
third keypoint on the right ski, keypoint four and five on the left
ski and the last keypoint on the thigh. The last keypoint, e.g., is lo­
cated at 20% of the length on the line between hip and knee, hence
it is closer to the hip.

head 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
shoulder 0 1 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0

elbow 0 0 1 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0
hand 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

hip 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.8

knee 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.2

ankle 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
right ski tip 0 0 0 0 0 0 0 1 0 0 0 0 0.5 0.2 0 0 0
right ski tail 0 0 0 0 0 0 0 0 1 0 0 0 0.5 0.8 0 0 0

left ski tip 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.7 0.5 0
left ski tail 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.3 0.5 0

parameters W ^M A of the EMA model at training iteration t
are calculated as

W EMA = a ■ W EMA + (1 - «) • w \

whereby w4 are the parameters of the original model at
training iteration t and all weights of the EMA model are
initialized with the same weights as the original model. The
EMA model can be seen as a temporal ensemble of the mod­
els from the last iterations, with more recent models having
a larger impact after a warm-up phase.

4. Experiments
All experiments are based on the TokenPose-Base archi­

tecture [9]. At first, feature maps are extracted using the
first three stages of a HRNet-w32 network [16]. The largest
feature maps of the HRNet output, which have | of the in­
put resolution, are used as an input for the Vision Trans­
former network. All input images are resized to 256 x 192
and the resulting feature maps are split into patches of size
4 x 3 . The patches are embedded to vectors of size 192
and we use 12 Transformer layers with 8 heads. We use 2D
sine positional encoding, which is added to the visual token
and corresponding intermediate representations after each
Transformer layer. To obtain the keypoint coordinates from
the heatmaps with resolution 64 x 48, we use the method
presented in [20].

4.1. Ski Jum p

Dataset. The ski jump training dataset contains 11,381
annotated images from 354 jump videos. The videos were
recorded at different ski jumping hills, during multiple
events and with different athletes, so their statures and
dressings vary. The videos have different resolutions, most

of them 720 x 576 pixels, but there are also a lot of HD and
full HD videos included in the dataset. The footage covers
a wide variety of weather and light conditions, e.g. snow,
rain, fog, summer, winter, day and night. Only few images
from every video are annotated, usually 2 - 4 frames per
camera view, whereby each video consists of 4 - 8 camera
views. Annotated keypoints are both ski tips and tails, head,
shoulder, elbow, hand, hip, knee and ankle. The annota­
tions of the joints are only available of one side of the body
(the one facing the camera). The dataset contains images of
the flight phase as well as images of the athlete during in-
run, where the skis are not visible and not annotated. The
best models are chosen according to validation on a seper-
ate validation set with 200 images. The final scores are col­
lected on the test set which contains 3,783 images from 121
videos.

Evaluation Metric. We use the Percentage of Correct
Keypoints (PCK) for evaluation purposes. The PCK met­
ric considers a keypoint as correct at a certain threshold t
if the distance of the detected keypoint to the ground truth
keypoint is less or equal than t times the torso size, which
is the distance between shoulder and hip joint in this case.
The recall at a certain PCK threshold tells the percentage
of keypoints that is considered correct at that threshold. We
use t = 0.1, which corresponds to approx. 5 cm in this
dataset.

Results. For all ski jump experiments, we use pre­
trained weights from the COCO dataset. At first, we train
a standard TokenPose-Base model. With an overall PCK
of 80.7%, the Transformer model achieves a similar perfor­
mance in comparison to a pure HRNet-w32 model, which
scores 80.8% PCK. If we use the EMA model like described
in Section 3.3, the total PCK rises to 81.9% and exceeds the
HRNet score. This shows that the temporal ensemble in­
cluded in the EMA model improves the model performance.
In the next experiments, we will stick to the EMA model for
our results. See Table 1, model A for further details.

In order to detect continuous keypoints on the body parts
of the ski jumpers and the skis, we add 36 intermediate
keypoints to the model. Three equally spaced intermedi­
ate points are added to the neck, upper arm, forearm, thigh,
lower leg and torso, as well as nine equally spaced interme­
diate points to left and right ski. A training on these key­
points shrinks the detection score by 0.8%, as the model is
now trained on a larger problem and can not focus on the
standard keypoints. But regarding the performance on all
keypoints, including the added keypoints, the performance
rises by 4.1%. These scores are only achieved if we use
all 47 learned keypoint tokens. Using only the keypoint to­
kens corresponding to the 11 standard keypoints instead of
the A-l used during training, the score drops to only 14.4%
PCK. It is remarkable that the performances vary between
the keypoints. The elbow score is still high, while the score

Mod. Input K | Head Shou. Elb. Hand Hip Knee Ank. rsti rsta Isti Ista | Avg Full

A’ std 98.3 91.3 73.2 65.1 85.0 80.1 83.7 73.9 81.9 67.4 81.2 80.7
A std 98.9 93.2 75.6 65.9 87.0 81.6 83.8 74.6 82.2 68.9 81.6 81.9

B all 98.7 93.5 74.5 64.8 86.6 81.3 81.8 74.7 80.8 68.3 80.0 81.1 86.0
B std 0.9 52.0 72.5 0.5 11.1 0.0 1.1 0.2 0.0 0.3 0.0 14.4

C all 98.3 91.2 71.6 63.5 83.5 78.6 75.8 69.5 77.4 62.8 76.0 77.9 83.2
C std 10.8 84.7 8.7 0.2 33.3 0.1 6.1 21.9 37.2 21.0 37.8 23.0

D all 98.9 92.9 74.1 62.9 85.8 80.2 81.1 73.3 79.8 64.9 78.4 80.1 85.3
D std 98.8 92.8 73.4 62.6 85.6 79.7 81.0 72.7 79.0 65.1 77.6 79.7

E all / 98.2 91.1 72.4 65.0 83.7 79.8 78.6 72.4 80.8 65.6 79.3 79.4 82.1
E std / 97.2 85.1 71.0 58.5 81.8 76.7 76.8 20.6 78.8 20.2 77.5 70.3

F all / 98.9 93.5 75.0 65.8 87.4 82.0 83.1 75.7 81.9 68.7 81.0 81.8 84.8
F std / 98.9 93.4 74.8 65.6 87.3 82.2 83.2 75.2 82.0 68.9 81.1 81.8
F sgl / 98.8 93.2 75.0 65.6 87.3 82.2 82.9 68.7 81.5 63.4 80.8 80.9

Table 1. Recall values in % at PCK threshold 0.1 for the ski jump datset of head, shoulder, elbow, hand, hip, knee, ankle, right ski tip, right
ski tail, left ski tip, left ski tail and the average PCK over all 11 keypoints (second last column). If more than these 11 standard keypoints
are used during training, the PCK score including the generated points is given in the last column. If the keypoint vector model is used,
this is indicated in the third column. The qualifiers std, all and sgl in the input column refer only to the used inference protocol and not to
the training procedure, std means that only the keypoint tokens/vectors that correspond to the standard joints are used as an input during
inference, all means that the full input as during training is used (either 47 keypoints or keypoint vectors with generated keypoints) and sgl
stands for single evaluation, meaning that a keypoint vector representing a single keypoint is passed to the model during inference and all
keypoints are obtained separately. Model A is the pure TokenPose-Base implementation trained on the standard keypoints. Model A’ is the
non-EMA model, all other results are from the EMA models. Model B is the TokenPose implementation with 36 intermediate keypoints
added. Model C is trained with token permutation, but not with token sampling. Model D is trained with token permutation and sampling.
Model E uses the keypoint vector model introduced in this work, trained with permutation and sampling of the standard keypoints. Model
F uses the keypoint vector model as well, trained with permutation and sampling of all keypoints.

for the knee and the ski tails drops to zero. Permuting the
keypoint tokens results in a further performance drop for
the evaluation with all tokens present. Using the standard
keypoint tokens only, the detection score rises a little to
23.0% (see model C), but this is too low for a usable model.
Including the random sampling and permutation technique
changes this behavior. We randomly choose at minimum
five keyp oints and maximum all 47 keypoints. This method
achieves a PCK of 80.1% evaluated on all keypoint tokens,
which is little lower than without this method. But its per­
formance drops only slightly if we evaluate with the stan­
dard keypoints only, it achieves a PCK of 79.9%.

For training the model that is based on keypoint vectors,
we generate 1 -3 0 additional keypoints on the neck, upper
arm, forearm, thigh, lower leg, torso, left and right ski. The
fraction p that defines the location on the bodypart is uni­
formly sampled between 0 and 1. Hence, we generate arbi­
trary keypoints during training. We permute and randomly
sample at minimum five and at maximum all keypoints
(standard and generated keypoints). However, randomly
sampling only the standard keypoints results in a inferior
score (see model E). This model achieves a PCK score of
81.8%, independent of the keyp oint vectors in the input,

which is a very similar performance as training solely on
the standard keypoints, but it is capable of directly detect­
ing arbitrary intermediate keypoints, which is proven by the
higher full PCK score of 84.8%. If we evaluate the model
only on generated keypoints (randomly between 1 - 30, ran­
domly chosen arbitrary keypoints), we get a PCK score of
even 86.3% (not in table). This proves that the model can
really detect arbitrary points. The model achieves also good
results if only a single keypoint vector is used as an input,
the average PCK is 80.9% in this case. Hence, the depen­
dence on the other keypoints is reduced to a minimum and
the model is really flexible for the sole detection of the de­
sired keypoints (see model F). Figure 6 shows some exam­
ples for intermediate detections. The model is lightweight
so that these visualizations are executable in nearly real­
time on a notebook CPU (see supplementary video).

4.2. Triple and Long Jump

Dataset The triple and long jump dataset contains 4,522
labeled images from 186 video sequences, whereby 3,154
images from 122 videos are used for training, 200 images
from 18 videos for validation and 1,062 images from 46
videos as the test set. The footage belongs to competition

Figure 6. Examples for intermediate detections on the left ski. The white cross on the silhouette of the ski jumper in the lower image shows
the selection of the intermediate keypoint. In the upper image, the corresponding keypoint is detected and displayed with a red circle.

Table 2. Recall values in % at PCK threshold 0.1 for the triple and
long jump datset. The first column displays the average PCK of the
standard keypoints with full input (all keypoint tokens/vectors) as
used during training. The average PCK score including the gen­
erated points is given in the second column. The third column
shows the average PCK of the standard keypoints with only the
keypoint tokens/vectors of the standard keypoints present in the
Transformer input and the last column the evaluation with key­
point vectors representing only single joints. Model A is Token-
Pose trained on the standard keypoins. Model B is TokenPose with
50 intermediate keypoints added. Model C is trained with token
permutation and sampling. Model D is the keypoint vector model,
trained with random samling of the standard keypoints and model
E with random sampling of all keypoints.

Model Avg PCK
All Input

Full PCK
All Input

Avg PCK
Std Input

Avg PCK
Sgl Input

A 91.3
B 91.1 93.2 35.1
C 91.1 93.2 91.1
D 91.3 92.5 90.4
E 91.7 92.9 91.7 91.5

and training scenarios and shows various sports sites and
athletes. All videos are annotated with 20 keypoints (head,
neck, r./l. shoulder, r./l. elbow, r./l.wrist, r./l. hip, r./l. knee,
r./l. ankle, r./l. big toe, r./l. small toe, r./l. heel).

Evaluation Metric. Like in Section 4.1, we use the PCK
metric relative to the torso size, which is defined as the dis­
tance between left shoulder and right hip in this case. Like
before, we use t = 0.1, which corresponds to approx. 6 cm
in this dataset.

Results. We depict the evaluation results in Table 2.
The TokenPose model with standard keypoints achieves a
PCK score of 91.3%. We add 50 points on the neck, up­
per arm, forearm, thigh, lower leg, shoulder axis, hip axis,
spine and the lines between neck and left/right hip as well as
left/right shoulder and neck. The performance on the stan­
dard joints is similar, but the performance with solely the
standard input keypoint tokens drops to 35.1%. Uniformly
sampling between five and all keypoints rises the detection
score of the standard keypoints to 91.1% independent of the

number of tokens in the input sequence. The keypoint vec­
tor model is capable of increasing the performance further,
even surpassing the standard model’s performance slightly
with 91.7% PCK independent of the keypoint vector input.
For that model, we generate 5 -5 0 keypoints uniformly dis­
tributed between all bodyparts during training. If we use
keypoint vectors that represent only a single joint and eval­
uate these results, the model still achieves an accuracy of
91.5% PCK, which is still better than the standard model.

4.3. COCO

Dataset The COCO [10] dataset contains over 200,000
images with 250,000 labeled person instances. For train­
ing, we use the train2017 split consisting of 57,000 images,
our results are reported on the val2017 split. We train ev­
ery model for 1.2 million steps on a single GPU, therefore,
the results are not identical to the results reported in [9].
This dataset has 17 annotated keypoints. Some keypoints
might not be visible in the images, which is different from
the other datasets. The annotated keypoints are nose, L/r.
eye, l./r. ear, l./r. shoulder, l./r. elbow, l./r. wrist, l./r. hip,
l./r. knee, l./r. ankle.

Evaluation Metric. We use the average precision (AP)
based on Object Keypoint Similarity (OKS) as the primary
metric for our evaluation, as this is the standard metric for
the COCO dataset. OKS is calculated as

n K a H i e x p (-d l/2 s 2 k ^ a (v i > 0))
H i > 0)

whereby di is the euclidean distance between correspond­
ing ground truth and detected keypoint, Vi is the ground
truth visibility flag, s is the object scale and ki per-keypoint
specific constants. Additionally, we use the PCK at thresh­
old 0.1 as we can not measure the performance of arbitrary
points with OKS.

Results. We display the results in Table 3. Our To­
kenPose training on COCO with the standard keypoints
achieves an AP of 74.8% without the EMA and an AP of
75.4% with the EMA. We add 53 points on the head, neck,
upper arm, forearm, thigh, lower leg, shoulder axis, hip
axis, spine and the lines between neck and left/right hip as
well as left /right shoulder and neck. The performance drop

Table 3. OKS results and average recall values at PCK threshold 0.1 in % on the COCO dataset. If more than the standard keypoints are
used, the PCK score including the generated points is given in the last column. The qualifiers std, all and sgl in the input column refer only
to the used inference protocol and not to the training procedure, std means that only the keypoint tokens/vectors that correspond to the
standard joints are used as an input during inference, all means that the full input as during training is used (either 70 keypoints or keypoint
vectors with generated keypoints) and sgl stands for single evaluation, meaning that a keypoint vector representing a single keypoint is
passed to the model during inference and all keypoints are obtained separately.

Model Input AP A P 50 A P 76 A P M A P L AR Avg PCK Full PCK

TokenPose std joints non EMA std 74.8 92.4 81.5 71.9 79.3 77.8 81.4
TokenPose std joints std 75.4 92.5 82.5 72.5 79.9 78.3 81.6

TokenPose added joints all 73.7 91.5 80.7 71.1 77.8 76.6 81.3 82.6
TokenPose added joints std 56.5 87.4 65.0 54.6 59.8 60.0 68.1

TokenPose added joints & sampling all 69.4 89.5 77.5 66.9 73.6 72.8 78.7 80.3
TokenPose added joints & sampling std 69.5 89.5 JIA 66.9 73.5 72.7 78.6

Keypoint Vector all 73.7 91.5 80.6 71.2 78.0 76.6 81.0 81.8
Keypoint Vector std 73.6 91.5 80.6 71.2 77.9 76.6 81.0
Keypoint Vector sgl 73.5 91.5 80.6 70.9 77.8 76.5 80.9

using only the standard keypoint input tokens is less on the
COCO dataset, but still significant. Using all tokens, the
model achieves an AP of 73.7%, with the standard tokens,
the AP drops to 56.5%. With the keypoint vector model, the
detection performance is nearly equal for full, standard and
single input. As the full PCK is higher than the standard
PCK, this proves that the model is capable of precisely de­
tecting arbitrary generated keypoints. The PCK in general
is lower than the PCK of the TokenPose model trained on
the standard keypoints, but this is caused by the training du­
ration. We stop after 1.2 million steps, where the keypoint
vector model did not fully converge as it learns slower due
to the significantly lower propagated signal caused by the
random sampling.

5. Conclusion
At first, this paper proposes a training routine that makes

it possible to train a TokenPose [9] model with additional
kepoints, but independent of these additional keypoints dur­
ing inference. In the standard TokenPose model, all key­
point tokens need to be present in the Transformer input,
as the model learns the location of the keypoints not only
from the image but also in dependence of the detections of
the other keypoints. Random sampling and permuting the
keypoint tokens in the input forces the model to learn the
keypoint locations independent of the other keypoints.

This model has the disadvantage that only the intermedi­
ate keypoints that are trained can be detected afterwards.
Designing the tokens such that the model finds arbitrary
keypoints is not possible as the coherence of left and right
tokens is larger than the coherence of neighboring tokens.
Hence, this paper proposes a novel architecture that uses
keypoint vectors instead of keypoint tokens as an input.

Keypoint vectors have the same length as the number of
annotated keypoints in the dataset. They sum up to 1 and
represent an arbitrary intermediate keypoint as a mixture of
the standard keypoints. Keypoint vectors are embedded like
the visual patches with a linear transformation in the embed­
ding space. Instead of learning fixed keypoint tokens, our
model learns this linear embedding.

Evaluations show that our keypoint vector model in
combination with the random sampling strategy works as
desired. The PCK on the standard joints is similiar or
even slightly better for all three experiments with different
datasets. The PCK including arbitrary intermediate key­
points is even higher, hence, the model can really detect
any desired intermediate keypoint. The detection of single
keypoints is also nearly completely independent from other
keypoints, which is proven by an evaluation with only sin­
gle keypoint vectors as an input to the Transformer.

In the future, we would like to extend our model to de­
tect not only arbitrary intermediate keypoints, but arbitrary
keypoints in general. In order to achieve that, segmentation
masks have to be leveraged and included in the model to
define the desired keypoints. With segmentation masks, it
is possible to know how far intermediate keypoints can be
located away from the direct line between two keypoints.

6. Acknowledgements
This work was funded by the Federal Institute for Sports

Science (BISp) based on a resolution of the German Bun­
destag. We would like to express our gratitude to the In­
stitute for Applied Training Science (IAT) Leipzig for the
collection and provision of the ski jump data. Furthermore,
we would like to thank the Olympic Training Center Hessen
for collecting and providing the triple and long jump data.

References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In IEEE Conference on Com­
puter Vision and Pattern Recognition (CVPR), June 2014.

[2] Lewis Bridgeman, Marco Volino, Jean-Yves Guillemaut,
and Adrian Hilton. Multi-person 3d pose estimation and
tracking in sports. In Proceedings o f the IEEE/CVF Con­
ference on Computer Vision and Pattern Recognition Work­
shops, pages 0-0, 2019.

[3] Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and
Maja Pantic. Toward fast and accurate human pose estima­
tion via soft-gated skip connections. In 2020 15th IEEE
International Conference on Automatic Face and Gesture
Recognition (FG 2020), pages 8-15. IEEE, 2020.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl­
vain Geliy, et al. An image is worth 16x16 words: Trans­
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[5] Moritz Einfalt, Dan Zecha, and Rainer Lienhart. Activity-
conditioned continuous human pose estimation for perfor­
mance analysis of athletes using the example of swimming.
In 2018 IEEE winter conference on applications o f computer
vision (WACV), pages 446-455. IEEE, 2018.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollär, and Ross Gir-
shick. Mask r-cnn. In Proceedings o f the IEEE international
conference on computer vision, pages 2961-2969, 2017.

[7] Junjie Huang, Zengguang Shan, Yuanhao Cai, Feng Guo,
Yun Ye, Xinze Chen, Zheng Zhu, Guan Huang, Jiwen Lu,
and Dalong Du. Joint coco and Ivis workshop at eccv 2020:
Coco keypoint challenge track technical report: Udp++.
2020.

[8] Kaustubh Milind Kulkarni and Sucheth Shenoy. Table ten­
nis stroke recognition using two-dimensional human pose
estimation. In Proceedings o f the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4576-
4584, 2021.

[9] Yanjie Li, Shoukui Zhang, Zhicheng Wang, Sen Yang,
Wankou Yang, Shu-Tao Xia, and Eijin Zhou. Tokenpose:
Learning keypoint tokens for human pose estimation. arXiv
preprint arXiv:2104.03516, 2021.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740-755.
Springer, 2014.

[11] Katja Ludwig, Moritz Einfalt, and Rainer Lienhart. Robust
estimation of flight parameters for ski jumpers. In 2020 IEEE
International Conference on Multimedia & Expo Workshops
(ICMEW), pages 1-6. IEEE, 2020.

[12] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour­
glass networks for human pose estimation. In European con­
ference on computer vision, pages 483^99. Springer, 2016.

[13] Antti Tarvainen and Harri Valpola. Mean teachers are bet­
ter role models: Weight-averaged consistency targets im­

prove semi-supervised deep learning results. In I. Guyon,
U. V Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor­
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Ulia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017.

[15] Jianbo Wang, Kai Qiu, Houwen Peng, Jianlong Fu, and
Jianke Zhu. Ai coach: Deep human pose estimation and
analysis for personalized athletic training assistance. In Pro­
ceedings o f the 27th ACM International Conference on Mul­
timedia, pages 374—382, 2019.

[16] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen­
tation learning for visual recognition. IEEE transactions on
pattern analysis and machine intelligence, 2020.

[17] Xinyu Wei, Long Sha, Patrick Lucey, Peter Carr, Sridha Srid-
haran, and Iain Matthews. Predicting ball ownership in bas­
ketball from a monocular view using only player trajecto­
ries. In Proceedings o f the IEEE International Conference
on Computer Vision Workshops, pages 63-70, 2015.

[18] Timothy Woinoski and Ivan V Bajifi. Swimmer stroke rate
estimation from overhead race video. In 2027 IEEE In­
ternational Conference on Multimedia & Expo Workshops
(ICMEW), pages 1-6. IEEE, 2021.

[19] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In Proceedings o f
the European conference on computer vision (ECCV), pages
466-481, 2018.

[20] Feng Zhang, Xiatian Zhu, Hanbin Dai, Mao Ye, and Ce Zhu.
Distribution-aware coordinate representation for human pose
estimation. In Proceedings o f the IEEE/CVF conference on
computer vision and pattern recognition, pages 7093-7102,
2020.

