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Abstract

Most human pose estimation datasets have a fixed set 
of keypoints. Hence, trained models are only capable of 
detecting these defined points. Adding new points to the 
dataset requires a full retraining of the model. We present 
a model based on the Vision Transformer architecture that 
can detect these fixed points and arbitrary intermediate 
points without any computational overhead during infer­
ence time. Furthermore, independently detected interme­
diate keypoints can improve analyses derived from the key- 
points such as the calculation of body angles. Our approach 
is based on TokenPose [9] and replaces the fixed keypoint 
tokens with an embedding of human readable key point vec­
tors to keypoint tokens. For ski jumpers, who benefit from 
intermediate detections especially of their skis, this model 
achieves the same performance as TokenPose on the fixed 
keypoints and can detect any intermediate keypoint directly.

1. Introduction

In many sports disciplines, video analysis is a popular 
technique to evaluate and improve the performance of the 
athletes. This video analysis is often based on the loca­
tion of certain keypoints of interest in the video frames. 
Ski jumpers, for example, use the keypoint locations to cal­
culate body angles in order to evaluate their body posture 
during the flight and achieve long jumping distances. 2D 
human pose estimation techniques can automate the detec­
tion of the keypoint locations, which makes the video anal­
ysis less time consuming and available to more athletes. 
Ski jumpers are mainly interested in angles between body 
parts or skis, hence intermediate keypoints can help to get a 
more robust estimation of the angles. With more keypoints, 
a body part or ski angle is not solely based on the detection 
of the two end keypoints, but can be calculated as a mean of 
angles between arbitrary keypoints on the body part or ski. 
Other analyses that are based on intermediate keypoints or

Figure 1. Intermediate keypoint detection. The white cross on the 
silhouette in the lower image shows the selection of the keypoint. 
In the upper video frame, the corresponding detected keypoint is 
displayed with a red circle. The user can move the white cross in 
the silhouette to change the definition of the keypoint.

parameters derived from the keypoints can also be improved 
as the detections of intermediate keypoints can be used in 
conjunction with the interpolations based on the standard 
keypoints.

In general, 2D human pose estimation is a task of high 
interest in computer vision research. Most common are 
architectures that use deep convolutional neural networks 
because of their high performance in visual tasks. Typi­
cally, these models are trained on a dataset with a fixed 
keypoint definition and the goal is to achieve a localiza­
tion of these defined keypoints as precisely as possible. The 
convolutional neural networks learn low and high level fea­
tures in their backbones combined with a head network that 
learns to extract detection heatmaps for each defined key­
point based on the backbone features. These head networks 
are fixed to the defined keypoints. Adding new keypoints 
requires a full new training of the network head. Recently, 
Transformer [14] networks have emerged from natural lan­
guage processing tasks to vision tasks. In language appli­
cations, all words are at first embedded to vectors of fixed 
dimensions. Transformers can handle input sequences of 
various length, which is useful for sentences. Vision Trans­
former [4] architectures split images in patches and embed 
these image patches to vectors like the words. In order to



detect keypoints, TokenPose [9] appends additional learn­
able vectors to that sequence of embedded image patches. 
Each of these tokens corresponds to a defined keypoint in 
the dataset. Our method leverages the variable sequence 
length as it provides the possibility to append and remove 
tokens as needed. This is not possible in the TokenPose 
model because the network relies on the intermediate rep­
resentations of all tokens to generate suitable predictions. 
Furthermore, we extend the TokenPose architecture so that 
we can train on arbitrary intermediate points. We learn 
a linear transformation of vectors representing the desired 
keypoints to the embedding space instead of tokens repre­
senting the fixed keypoints. Therefore, we can design the 
keypoint vector during inference time according to the key­
points that we like to detect. Figure 1 shows such an inter­
mediate keypoint detection. [9]

The contributions of this work can be summarized as fol­
lows:

•  Our proposed training method makes the TokenPose 
predictions independent of the provided keypoint to­
kens. Trained with our method, it can detect a subset 
of the known keypoints without the necessity of all to­
kens being present.

•  We extend the TokenPose model to detect arbitrary in­
termediate points. The desired points are encoded in 
human understandable keypoint vectors which are em­
bedded through a learned linear transformation in the 
token space.

•  Experiments show that our method can detect arbitrary 
intermediate keypoints of ski jumpers while maintain­
ing the detection performance of the standard key­
points of ski jumpers. Furthermore, the method also 
works on another sports dataset with triple and long 
jump images and on the COCO [10] dataset.

2. Related Work
In many sports disciplines, computer vision is a benefi­

cial technique to analyze athletes. Kulkarni et al. [8] use 
convolutional neural networks to estimate athletes’ poses 
and classify table tennis stroke types. Woinoski et al. [18] 
detect and track swimmers during races to analyze strokes 
and detect breaths. Einfalt et al. [5] detect poses of swim­
mers and improve their estimated poses with using the 
swimming style as an input to the neural network and a pose 
refinement over time. Computer vision is also used in team 
sports, e.g., Bridgeman et al. [2] track athletes in soccer 
videos and create 3D poses of them and Wei et al.[17] es­
timate the location of the ball from monocular basketball 
video footage based on the players’ trajectories. Further­
more, human pose and ski estimation is used for different 
ski disciplines. Wang et al. [15] estimate the poses of 

freestyle skiers and propose a pose correction and exemplar­
based visual suggestions to the athletes. Human and ski 
pose estimation with robust estimation methods is also used 
by Ludwig et al. [11] in order to calculate the flight angles 
of ski jumpers during their flight phase.

In sports, 2D human pose estimation is very common 
technique among computer vision analysis applications. 
The approaches with the best scores on leaderboards of 
common benchmarks like COCO [10] or MPII Human Pose 
[1] are based on convolutional neural networks [7, 3]. A 
common backbone for recent human pose estimation ap­
proaches which is also used in [7] is the High Resolution 
Net (HRNet) [16]. It preserves a large resolution through­
out the whole network and uses connections between dif­
ferent resolutions instead of an encoder decoder architec­
ture like in [6, 12, 19]. Contrary to the fully convolutional 
approaches which are most common, TokenPose [9] is a 
Transformer [14] based approach for human pose estima­
tion. It is usable without any convolutions, but it achieves 
the best and state-of-the-art results with a part of an HRNet 
as a feature extractor. The basic Transformer [14] architec­
ture takes sequences of ID tokens as an input. In order to 
deal with 2D images or feature maps, Vision Transformer 
[4] proposes to embed small image patches by a learned 
linear projection to ID token vectors. This approach is used 
by TokenPose. Additionally, learnable keypoint tokens are 
appended to the image tokens and used as the Transformer 
input. The output of these keypoint tokens is then trans­
formed through a MLP to heatmaps.

3. Method

Our model is based on TokenPose-Base [9], which is a 
combined convolutional and Transformer architecture. Ba­
sically, the proposed method and architecture are also ap­
plicable to all other TokenPose variants.

3.1. Additional Tokens for Intermediate Keypoints

In the standard TokenPose architectures, a token is 
learned for each defined keypoint. These tokens are ap­
pended to the image patches and fed jointly through the 
Transformer network. In the end, the outputs of the Trans­
former network that correspond to these tokens are con­
verted to heatmaps with a MLP with shared weights across 
the keypoints. Hence, the naive approach to add more key­
points is to create a token for each added keypoint and train 
the network on the larger keypoint set. [9]

3.1.1 Learning Independent Keypoint Tokens

This method has a disadvantage. It always detects all in­
termediate keypoints at all times, even if only a subset of 
intermediate points is desired. Removing the unnecessary
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Figure 2. Scematic representation of keypoint sampling and per­
mutation. For each additional keypoint, a token is added to the 
standard keypoint tokens. During training, a random subset of all 
keypoint tokens is selected and randomly permuted. Only the se­
lected keypoints are appended to the visual tokens as an input to 
the Transformer network.

tokens from the Transformer input sequence in order to re­
ceive only the necessary detections fails, as shown by evalu­
ations in Section 4. We suppose the reason is that the Trans­
former network correlates all embeddings of the input with 
each other, visual tokens as well as keypoint tokens. There­
fore, the result for each keypoint is dependent on the inter­
mediate representations of the feature maps corresponding 
to the keypoint tokens. If these tokens are not given in the 
input sequence, the Transformer misses necessary informa­
tion to generate precise predictions. This dependence is a 
desired effect in TokenPose, as the intermediate results of 
neighboring keypoints help the model to detect occluded 
keypoints. This effect is called contstraint cue in Token- 
Pose. [9]

We can alter the model so that it can cope with our sce­
nario. In each training step, we randomly select a subset 
of the keypoints, whereby the number of selected keypoints 
is random as well, and permute them. As an input to the 
Transformer model, we use only the tokens that correspond 
to the selected subset of keypoints, the other tokens are not 
present in the input sequence. Figure 2 visualizes this tech­
nique. Consequently, the loss is calculated based on the 
sampled keypoints. Solely permuting the keypoint tokens 
is not sufficient, as Transformer networks are independent 
from the input sequence order to a certain extent Permu­
tation and random keypoint sampling is necessary that the 
Transformer learns to be quite independent from the present 
keypoint tokens, but evaluations show that there is still a 
slight performance drop if less keypoint tokens are used (see 
Section 4).

3.1.2 Analysis of Keypoint Tokens

Our goal is to detect arbitrary intermediate keypoints di­
rectly through the network. A transformation is necessary 
to create the specific keypoint tokens in order to detect the 
desired keypoints. A look at the inner product matrix of the 
learned keypoint tokens, which shows the similarity of the 

tokens, reveals a problem. In Figure 3, the inner product 
matrix of left and right ski with nine equally spaced inter­
mediate keypoints is displayed. The matrix shows that the 
similarity of neighboring keypoint tokens is mostly high, 
but smaller than the similarity between the corresponding 
left and right keypoint token. Hence, it is not possible to 
design the tokens to detect arbitrary intermediate keypoints 
as there is an interference between tokens corresponding to 
left and right.

3.2. Intermediate Keypoints Encoded in Vectors

Therefore, we design another architecture, which is vi­
sualized in Figure 4. At first, features are extracted from 
the images with a HRNet [16] backbone. The feature maps 
are split into feature patches and embedded through a linear 
projection like proposed by [4]. 2D sine positional encoding 
is added to the resulting visual tokens. Instead of appending 
learnable keypoint tokens to the sequence of visual tokens, 
we use a method similar to the feature patch embedding. We 
encode the keypoints in keypoint vectors (details follow in 
Section 3.2.1) and use a linear projection to create embed­
dings of the keypoints. Hence, the model learns the trans­
formation from keypoint vectors to keypoint tokens. Before 
appending the keypoint tokens to the input sequence, we 
randomly sample and permute the tokens, like described in 
Section 3.1.1. Between the Transformer layers, we always 
add the positional encoding to the visual tokens, but not to 
the keypoint tokens as we want them to be independent of
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0.30_rsti_rsta 
0.40_rsti_rsta 
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0.80_rsti_rsta 
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Figure 3. Inner product matrix for left and right ski with interme­
diate points, rsti/lsti stands for right/left ski tip, rsta/lsta stands for 
right/left ski tail, p s t is ta  means the keypoint is located on frac­
tion p  of the line between sti and sta. With increasing similarity, 
the color darkens, indicating a high similarity between correspond­
ing left and right keypoints, which can be seen by the dark colored 
diagonal squares in the top right and bottom left part of the matrix.
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Figure 4. Model architecture with keypoint vectors. Image features are extracted with a convolutional neural network, split into feature 
patches and transformed to visual tokens using a learned linear projection. Keypoint vectors are treated similarly. They are transformed to 
keypoint tokens through a learned Unear projection. Both Unear projections are independent from each other. Positional encoding is added 
to the visual tokens, but not to the keypoint tokens. Keypoint tokens are randomly sampled and permuted before they are fed through the 
Transformer network. A MLP is used to transform the resulting keypoint tokens to heatmaps. [9]

the order. Like in TokenPose [9], we keep the outputs of the 
Transfomer corresponding to the keypoint tokens and use 
a MLP with shared weights to generate heatmaps for the 
desired keypoints.

3.2.1 Keypoint Vectors

The keypoint vectors are designed in a way that arbitrary 
keypoints on lines between the standard keypoints are rep­
resentable. If a dataset has n  annotated keypoints per per­
son, a keypoint vector v for this dataset has length n, hence 
v & R". If we want to detect a keypoint of these annotated 
kepoints, e.g., keypoint i, then

Vk - f l ,  k = i(  0, k ^ i

Let the line between keypoints i , j  be a body part for the 
annotated keypoints in the dataset, e.g. forearm, upper arm, 
thigh, lower leg, neck, etc. If a keypoint should be detected 
that Ues on fraction p  on the line between keypoints i and j ,  
v is defined as 

Vk =
1 - P ,
P,
0,

k = i
k = j  k =  1, ...,n
k i / \ k  j

If p =  1, the keypoint is located at the end on the line from i 
to j ,  hence the desired keypoint equals keypoint j .  If p  =  0, 
the keypoint definition is equal to keypoint i. For our train­
ing, we use all standard keypoints and randomly generate 
other arbitrary keypoints, sampled from all bodyparts of the 
dataset with p  sampled uniformly from [0,1]. An example 
for the ski jump dataset is visualized in Figure 5. With this 
method, it is also possible to generate keypoints that are lo­
cated between intermediate keypoints. If we take the COCO 
dataset, for example, and want to generate keypoints on the 
spine, these keypoints are located on the line between key­
points i and j ,  whereby keypoint i is located in the middle of 
the two shoulder keypoints s i , S2 and keypoint j  in the mid­
dle of the left and right hip keypoint h i, hz. Hence, if we 
want to detect a keypoint on fraction p  of the line between 
i and j ,  our keypoint vector v consists of zeros apart from 
entries vS1 = vS2 =  (1 — p) ■ 0.5 and = Vh2 = p  - 0.5. 
So, we can design arbitrary intermediate keypoints that fie 
between annotated keypoints.

3.3. Exponential Moving Average

The validation score has a high fluctuation rate through­
out the training, even after convergence. In order to re­
duce fluctuation, we keep an exponential moving average 
(EMA) of our model like it is used for mean teacher semi­
supervised learning in [13]. Let a  be the EMA rate, then all



Figure 5. Keypoint vectors for the ski jump dataset. Keypoint vec­
tors are displayed vertically. The first eleven vectors correspond 
to the standard keypoints. The last six keypoints are generated, 
whereby the number of generated keypoints is chosen randomly. 
The first generated keypoint lies on the upper arm, the second and 
third keypoint on the right ski, keypoint four and five on the left 
ski and the last keypoint on the thigh. The last keypoint, e.g., is lo­
cated at 20% of the length on the line between hip and knee, hence 
it is closer to the hip.

head 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
shoulder 0 1 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0

elbow 0 0 1 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0
hand 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

hip 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.8

knee 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.2

ankle 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
right ski tip 0 0 0 0 0 0 0 1 0 0 0 0 0.5 0.2 0 0 0
right ski tail 0 0 0 0 0 0 0 0 1 0 0 0 0.5 0.8 0 0 0

left ski tip 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.7 0.5 0
left ski tail 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.3 0.5 0

parameters W ^M A  of the EMA model at training iteration t 
are calculated as

W EMA = a  ■ W EMA +  (1 -  «) • w \

whereby w4 are the parameters of the original model at 
training iteration t  and all weights of the EMA model are 
initialized with the same weights as the original model. The 
EMA model can be seen as a temporal ensemble of the mod­
els from the last iterations, with more recent models having 
a larger impact after a warm-up phase.

4. Experiments
All experiments are based on the TokenPose-Base archi­

tecture [9]. At first, feature maps are extracted using the 
first three stages of a HRNet-w32 network [16]. The largest 
feature maps of the HRNet output, which have |  of the in­
put resolution, are used as an input for the Vision Trans­
former network. All input images are resized to 256 x 192 
and the resulting feature maps are split into patches of size 
4 x 3 .  The patches are embedded to vectors of size 192 
and we use 12 Transformer layers with 8 heads. We use 2D 
sine positional encoding, which is added to the visual token 
and corresponding intermediate representations after each 
Transformer layer. To obtain the keypoint coordinates from 
the heatmaps with resolution 64 x 48, we use the method 
presented in [20].

4.1. Ski Jum p

Dataset. The ski jump training dataset contains 11,381 
annotated images from 354 jump videos. The videos were 
recorded at different ski jumping hills, during multiple 
events and with different athletes, so their statures and 
dressings vary. The videos have different resolutions, most 

of them 720 x 576 pixels, but there are also a lot of HD and 
full HD videos included in the dataset. The footage covers 
a wide variety of weather and light conditions, e.g. snow, 
rain, fog, summer, winter, day and night. Only few images 
from every video are annotated, usually 2 - 4  frames per 
camera view, whereby each video consists of 4 - 8 camera 
views. Annotated keypoints are both ski tips and tails, head, 
shoulder, elbow, hand, hip, knee and ankle. The annota­
tions of the joints are only available of one side of the body 
(the one facing the camera). The dataset contains images of 
the flight phase as well as images of the athlete during in- 
run, where the skis are not visible and not annotated. The 
best models are chosen according to validation on a seper- 
ate validation set with 200 images. The final scores are col­
lected on the test set which contains 3,783 images from 121 
videos.

Evaluation Metric. We use the Percentage of Correct 
Keypoints (PCK) for evaluation purposes. The PCK met­
ric considers a keypoint as correct at a certain threshold t 
if the distance of the detected keypoint to the ground truth 
keypoint is less or equal than t  times the torso size, which 
is the distance between shoulder and hip joint in this case. 
The recall at a certain PCK threshold tells the percentage 
of keypoints that is considered correct at that threshold. We 
use t  = 0.1, which corresponds to approx. 5 cm in this 
dataset.

Results. For all ski jump experiments, we use pre­
trained weights from the COCO dataset. At first, we train 
a standard TokenPose-Base model. With an overall PCK 
of 80.7%, the Transformer model achieves a similar perfor­
mance in comparison to a pure HRNet-w32 model, which 
scores 80.8% PCK. If we use the EMA model like described 
in Section 3.3, the total PCK rises to 81.9% and exceeds the 
HRNet score. This shows that the temporal ensemble in­
cluded in the EMA model improves the model performance. 
In the next experiments, we will stick to the EMA model for 
our results. See Table 1, model A for further details.

In order to detect continuous keypoints on the body parts 
of the ski jumpers and the skis, we add 36 intermediate 
keypoints to the model. Three equally spaced intermedi­
ate points are added to the neck, upper arm, forearm, thigh, 
lower leg and torso, as well as nine equally spaced interme­
diate points to left and right ski. A training on these key­
points shrinks the detection score by 0.8%, as the model is 
now trained on a larger problem and can not focus on the 
standard keypoints. But regarding the performance on all 
keypoints, including the added keypoints, the performance 
rises by 4.1%. These scores are only achieved if we use 
all 47 learned keypoint tokens. Using only the keypoint to­
kens corresponding to the 11 standard keypoints instead of 
the A-l used during training, the score drops to only 14.4% 
PCK. It is remarkable that the performances vary between 
the keypoints. The elbow score is still high, while the score



Mod. Input K | Head Shou. Elb. Hand Hip Knee Ank. rsti rsta Isti Ista | Avg Full

A’ std 98.3 91.3 73.2 65.1 85.0 80.1 83.7 73.9 81.9 67.4 81.2 80.7
A std 98.9 93.2 75.6 65.9 87.0 81.6 83.8 74.6 82.2 68.9 81.6 81.9

B all 98.7 93.5 74.5 64.8 86.6 81.3 81.8 74.7 80.8 68.3 80.0 81.1 86.0
B std 0.9 52.0 72.5 0.5 11.1 0.0 1.1 0.2 0.0 0.3 0.0 14.4

C all 98.3 91.2 71.6 63.5 83.5 78.6 75.8 69.5 77.4 62.8 76.0 77.9 83.2
C std 10.8 84.7 8.7 0.2 33.3 0.1 6.1 21.9 37.2 21.0 37.8 23.0

D all 98.9 92.9 74.1 62.9 85.8 80.2 81.1 73.3 79.8 64.9 78.4 80.1 85.3
D std 98.8 92.8 73.4 62.6 85.6 79.7 81.0 72.7 79.0 65.1 77.6 79.7

E all / 98.2 91.1 72.4 65.0 83.7 79.8 78.6 72.4 80.8 65.6 79.3 79.4 82.1
E std / 97.2 85.1 71.0 58.5 81.8 76.7 76.8 20.6 78.8 20.2 77.5 70.3

F all / 98.9 93.5 75.0 65.8 87.4 82.0 83.1 75.7 81.9 68.7 81.0 81.8 84.8
F std / 98.9 93.4 74.8 65.6 87.3 82.2 83.2 75.2 82.0 68.9 81.1 81.8
F sgl / 98.8 93.2 75.0 65.6 87.3 82.2 82.9 68.7 81.5 63.4 80.8 80.9

Table 1. Recall values in % at PCK threshold 0.1 for the ski jump datset of head, shoulder, elbow, hand, hip, knee, ankle, right ski tip, right 
ski tail, left ski tip, left ski tail and the average PCK over all 11 keypoints (second last column). If more than these 11 standard keypoints 
are used during training, the PCK score including the generated points is given in the last column. If the keypoint vector model is used, 
this is indicated in the third column. The qualifiers std, all and sgl in the input column refer only to the used inference protocol and not to 
the training procedure, std means that only the keypoint tokens/vectors that correspond to the standard joints are used as an input during 
inference, all means that the full input as during training is used (either 47 keypoints or keypoint vectors with generated keypoints) and sgl 
stands for single evaluation, meaning that a keypoint vector representing a single keypoint is passed to the model during inference and all 
keypoints are obtained separately. Model A is the pure TokenPose-Base implementation trained on the standard keypoints. Model A’ is the 
non-EMA model, all other results are from the EMA models. Model B is the TokenPose implementation with 36 intermediate keypoints 
added. Model C is trained with token permutation, but not with token sampling. Model D is trained with token permutation and sampling. 
Model E uses the keypoint vector model introduced in this work, trained with permutation and sampling of the standard keypoints. Model 
F uses the keypoint vector model as well, trained with permutation and sampling of all keypoints.

for the knee and the ski tails drops to zero. Permuting the 
keypoint tokens results in a further performance drop for 
the evaluation with all tokens present. Using the standard 
keypoint tokens only, the detection score rises a little to 
23.0% (see model C), but this is too low for a usable model. 
Including the random sampling and permutation technique 
changes this behavior. We randomly choose at minimum 
five keyp oints and maximum all 47 keypoints. This method 
achieves a PCK of 80.1% evaluated on all keypoint tokens, 
which is little lower than without this method. But its per­
formance drops only slightly if we evaluate with the stan­
dard keypoints only, it achieves a PCK of 79.9%.

For training the model that is based on keypoint vectors, 
we generate 1 -3 0  additional keypoints on the neck, upper 
arm, forearm, thigh, lower leg, torso, left and right ski. The 
fraction p  that defines the location on the bodypart is uni­
formly sampled between 0 and 1. Hence, we generate arbi­
trary keypoints during training. We permute and randomly 
sample at minimum five and at maximum all keypoints 
(standard and generated keypoints). However, randomly 
sampling only the standard keypoints results in a inferior 
score (see model E). This model achieves a PCK score of 
81.8%, independent of the keyp oint vectors in the input, 

which is a very similar performance as training solely on 
the standard keypoints, but it is capable of directly detect­
ing arbitrary intermediate keypoints, which is proven by the 
higher full PCK score of 84.8%. If we evaluate the model 
only on generated keypoints (randomly between 1 - 30, ran­
domly chosen arbitrary keypoints), we get a PCK score of 
even 86.3% (not in table). This proves that the model can 
really detect arbitrary points. The model achieves also good 
results if only a single keypoint vector is used as an input, 
the average PCK is 80.9% in this case. Hence, the depen­
dence on the other keypoints is reduced to a minimum and 
the model is really flexible for the sole detection of the de­
sired keypoints (see model F). Figure 6 shows some exam­
ples for intermediate detections. The model is lightweight 
so that these visualizations are executable in nearly real­
time on a notebook CPU (see supplementary video).

4.2. Triple and Long Jump

Dataset The triple and long jump dataset contains 4,522 
labeled images from 186 video sequences, whereby 3,154 
images from 122 videos are used for training, 200 images 
from 18 videos for validation and 1,062 images from 46 
videos as the test set. The footage belongs to competition



Figure 6. Examples for intermediate detections on the left ski. The white cross on the silhouette of the ski jumper in the lower image shows
the selection of the intermediate keypoint. In the upper image, the corresponding keypoint is detected and displayed with a red circle.

Table 2. Recall values in % at PCK threshold 0.1 for the triple and 
long jump datset. The first column displays the average PCK of the 
standard keypoints with full input (all keypoint tokens/vectors) as 
used during training. The average PCK score including the gen­
erated points is given in the second column. The third column 
shows the average PCK of the standard keypoints with only the 
keypoint tokens/vectors of the standard keypoints present in the 
Transformer input and the last column the evaluation with key­
point vectors representing only single joints. Model A is Token- 
Pose trained on the standard keypoins. Model B is TokenPose with 
50 intermediate keypoints added. Model C is trained with token 
permutation and sampling. Model D is the keypoint vector model, 
trained with random samling of the standard keypoints and model 
E with random sampling of all keypoints.

Model Avg PCK 
All Input

Full PCK 
All Input

Avg PCK 
Std Input

Avg PCK 
Sgl Input

A 91.3
B 91.1 93.2 35.1
C 91.1 93.2 91.1
D 91.3 92.5 90.4
E 91.7 92.9 91.7 91.5

and training scenarios and shows various sports sites and 
athletes. All videos are annotated with 20 keypoints (head, 
neck, r./l. shoulder, r./l. elbow, r./l.wrist, r./l. hip, r./l. knee, 
r./l. ankle, r./l. big toe, r./l. small toe, r./l. heel).

Evaluation Metric. Like in Section 4.1, we use the PCK 
metric relative to the torso size, which is defined as the dis­
tance between left shoulder and right hip in this case. Like 
before, we use t =  0.1, which corresponds to approx. 6 cm 
in this dataset.

Results. We depict the evaluation results in Table 2. 
The TokenPose model with standard keypoints achieves a 
PCK score of 91.3%. We add 50 points on the neck, up­
per arm, forearm, thigh, lower leg, shoulder axis, hip axis, 
spine and the lines between neck and left/right hip as well as 
left/right shoulder and neck. The performance on the stan­
dard joints is similar, but the performance with solely the 
standard input keypoint tokens drops to 35.1%. Uniformly 
sampling between five and all keypoints rises the detection 
score of the standard keypoints to 91.1% independent of the 

number of tokens in the input sequence. The keypoint vec­
tor model is capable of increasing the performance further, 
even surpassing the standard model’s performance slightly 
with 91.7% PCK independent of the keypoint vector input. 
For that model, we generate 5 -5 0  keypoints uniformly dis­
tributed between all bodyparts during training. If we use 
keypoint vectors that represent only a single joint and eval­
uate these results, the model still achieves an accuracy of 
91.5% PCK, which is still better than the standard model.

4.3. COCO

Dataset The COCO [10] dataset contains over 200,000 
images with 250,000 labeled person instances. For train­
ing, we use the train2017 split consisting of 57,000 images, 
our results are reported on the val2017 split. We train ev­
ery model for 1.2 million steps on a single GPU, therefore, 
the results are not identical to the results reported in [9]. 
This dataset has 17 annotated keypoints. Some keypoints 
might not be visible in the images, which is different from 
the other datasets. The annotated keypoints are nose, L/r. 
eye, l./r. ear, l./r. shoulder, l./r. elbow, l./r. wrist, l./r. hip, 
l./r. knee, l./r. ankle.

Evaluation Metric. We use the average precision (AP) 
based on Object Keypoint Similarity (OKS) as the primary 
metric for our evaluation, as this is the standard metric for 
the COCO dataset. OKS is calculated as

n K a H i  e x p (-d l/2 s 2 k ^ a (v i  > 0))
H i  > 0)

whereby di is the euclidean distance between correspond­
ing ground truth and detected keypoint, Vi is the ground 
truth visibility flag, s is the object scale and ki per-keypoint 
specific constants. Additionally, we use the PCK at thresh­
old 0.1 as we can not measure the performance of arbitrary 
points with OKS.

Results. We display the results in Table 3. Our To­
kenPose training on COCO with the standard keypoints 
achieves an AP of 74.8% without the EMA and an AP of 
75.4% with the EMA. We add 53 points on the head, neck, 
upper arm, forearm, thigh, lower leg, shoulder axis, hip 
axis, spine and the lines between neck and left/right hip as 
well as left /right shoulder and neck. The performance drop



Table 3. OKS results and average recall values at PCK threshold 0.1 in % on the COCO dataset. If more than the standard keypoints are 
used, the PCK score including the generated points is given in the last column. The qualifiers std, all and sgl in the input column refer only 
to the used inference protocol and not to the training procedure, std means that only the keypoint tokens/vectors that correspond to the 
standard joints are used as an input during inference, all means that the full input as during training is used (either 70 keypoints or keypoint 
vectors with generated keypoints) and sgl stands for single evaluation, meaning that a keypoint vector representing a single keypoint is 
passed to the model during inference and all keypoints are obtained separately.

Model Input AP A P 50 A P 76 A P M A P L AR Avg PCK Full PCK

TokenPose std joints non EMA std 74.8 92.4 81.5 71.9 79.3 77.8 81.4
TokenPose std joints std 75.4 92.5 82.5 72.5 79.9 78.3 81.6

TokenPose added joints all 73.7 91.5 80.7 71.1 77.8 76.6 81.3 82.6
TokenPose added joints std 56.5 87.4 65.0 54.6 59.8 60.0 68.1

TokenPose added joints & sampling all 69.4 89.5 77.5 66.9 73.6 72.8 78.7 80.3
TokenPose added joints & sampling std 69.5 89.5 JIA 66.9 73.5 72.7 78.6

Keypoint Vector all 73.7 91.5 80.6 71.2 78.0 76.6 81.0 81.8
Keypoint Vector std 73.6 91.5 80.6 71.2 77.9 76.6 81.0
Keypoint Vector sgl 73.5 91.5 80.6 70.9 77.8 76.5 80.9

using only the standard keypoint input tokens is less on the 
COCO dataset, but still significant. Using all tokens, the 
model achieves an AP of 73.7%, with the standard tokens, 
the AP drops to 56.5%. With the keypoint vector model, the 
detection performance is nearly equal for full, standard and 
single input. As the full PCK is higher than the standard 
PCK, this proves that the model is capable of precisely de­
tecting arbitrary generated keypoints. The PCK in general 
is lower than the PCK of the TokenPose model trained on 
the standard keypoints, but this is caused by the training du­
ration. We stop after 1.2 million steps, where the keypoint 
vector model did not fully converge as it learns slower due 
to the significantly lower propagated signal caused by the 
random sampling.

5. Conclusion
At first, this paper proposes a training routine that makes 

it possible to train a TokenPose [9] model with additional 
kepoints, but independent of these additional keypoints dur­
ing inference. In the standard TokenPose model, all key­
point tokens need to be present in the Transformer input, 
as the model learns the location of the keypoints not only 
from the image but also in dependence of the detections of 
the other keypoints. Random sampling and permuting the 
keypoint tokens in the input forces the model to learn the 
keypoint locations independent of the other keypoints.

This model has the disadvantage that only the intermedi­
ate keypoints that are trained can be detected afterwards. 
Designing the tokens such that the model finds arbitrary 
keypoints is not possible as the coherence of left and right 
tokens is larger than the coherence of neighboring tokens. 
Hence, this paper proposes a novel architecture that uses 
keypoint vectors instead of keypoint tokens as an input. 

Keypoint vectors have the same length as the number of 
annotated keypoints in the dataset. They sum up to 1 and 
represent an arbitrary intermediate keypoint as a mixture of 
the standard keypoints. Keypoint vectors are embedded like 
the visual patches with a linear transformation in the embed­
ding space. Instead of learning fixed keypoint tokens, our 
model learns this linear embedding.

Evaluations show that our keypoint vector model in 
combination with the random sampling strategy works as 
desired. The PCK on the standard joints is similiar or 
even slightly better for all three experiments with different 
datasets. The PCK including arbitrary intermediate key­
points is even higher, hence, the model can really detect 
any desired intermediate keypoint. The detection of single 
keypoints is also nearly completely independent from other 
keypoints, which is proven by an evaluation with only sin­
gle keypoint vectors as an input to the Transformer.

In the future, we would like to extend our model to de­
tect not only arbitrary intermediate keypoints, but arbitrary 
keypoints in general. In order to achieve that, segmentation 
masks have to be leveraged and included in the model to 
define the desired keypoints. With segmentation masks, it 
is possible to know how far intermediate keypoints can be 
located away from the direct line between two keypoints.
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